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A Generalized Quadrature Formula
for Cauchy Integrals

VALTER J. E. STARK*
Saab-Scania, Linkoping, Sweden

CAUCHY integrals, which are common in aerodynamics,
cannot always be evaluated in closed form. There is a

demand, therefore, for numerical methods. Such methods
have been proposed by e.g., Longman,1 Song,2 Garrick,3 and
Brakhage.4 The first two are similar to the method of sub-
traction of the singularity,5 while Garrick's method is based
on the calculation of the conjugate Fourier series, which is
done in an optimal way. Using Garrick's result, Brakhage
gave a corresponding explicit quadrature formula for a Cauchy
integral (i.e., a Cauchy principal value) of the form

(1)0 COS0 — COST/'

This was based on the condition that /(</>) is an even, 2?r-peri-
odic function of <£. For /(<£) analytic, he also estimated the
error.

The applicability of Brakhage's formula can be extended.
We show here that a corresponding formula can be derived
for integrands containing an arbitrary weight function. We
consider the integral

u(y)(y - x)~ldy (2)

and assume that u(x) is a product of a regular factor and the
weight function W(x); this is positive and integrable but not
necessarily regular. We prove that the formula

n
<f u(y)(y -

J *
OnU(Xn)(Xn-Xm)-1 (3)

n = l

is exactly valid under the following conditions:
1) The ratio u(x)/W(x) is a polynomial of degree ^2N.
2) The points x = xn, n = 1(1)N, are the N zeros of the
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Fig. 1 u = 1 — [(1 -f- x)/2]s and corresponding w function.
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polynomial PN(X) of degree N in the system {Pn(x) } of orth-
ogonal polynomials assuming W(x) as weight function, — 1
<x<l.

3) The points x = Xm, m = 1, 2, . . . , are zeros of the
function

QN(X) = - W(y)PN(y)(y -

4) The coefficients an are defined by

an = -2QN(xn)/W(xn)PN'(xn)

(4)

(5)

where PN'(xn) is the derivative of PN(X) at x = xn.
The weights an and the abscissas xn are seen to be identical

with those of the ordinary Gaussian formula for the weight
function W(x). The zeros x = Xm of QN(X) are regarded as
optimal locations, for, with 2N + 1 parameters (an) xn, and
Xm) at our disposal, it should be possible to set up a quadra-
ture formula which yields exact results for arbitrary poly-
nomials of degree 2N, but not for those of higher orders.

In order to prove Eq. (3), we apply it to a test function
u\(x). By means of the interpolation functions

hn(x) = PN(x)W(x)/PN'(xn)W(xn)(x - xn)
and an arbitrary polynomial of degree N,

A + (x - X^FN-^X)
we define u\(x) as

(6)

N
u(xn)hn(x)

W(x)PN(x)[A + (x - (7)

Equation (3) is valid, if it is valid for Ui(x), for Ui(x)/W(x) is
an arbitrary polynomial of degree 2N.

Using the relation

an = (xn - Xm) hn(y)(y - (8)

derived below and inserting u\(y) for u(y), we recast the left-
hand member of Eq. (3) in the form

anu(xr)(xn — Xm)~l

n=l
X

W(y)PN(y)(y - (9)

The first integral in this expression is zero, for the points x =
Xm were defined as zeros of QN(X). The second integral is
also zero, for FN-i (x) may be regarded as a linear combination
of the polynomials Pn(x), n = 0(1) (N — 1), which are
orthogonal to PN(X). This nearly completes the proof, for
the remaining summation agrees with the right-hand member
of Eq. (3).

The relation (8) may be proved by inserting Eq. (6) for
hn(y). Decomposing the integrand into partial fractions and
noting that owing to the definition of Xm one of the integrals
appearing is zero, we arrive at the expression

(10)

This agrees with Eq. (5).
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Application

We consider two-dimensional flow about a thin profile and
let the values at the surface of the tangential and normal
velocities of a lifting flow (or the normal and tangential ve-
locities of a nonlifting flow) be denoted by u(x) and w(x), re-
spectively. These quantities are approximately related by

u(y)(y - x)~ldy = irw(x) (11)

Applying the quadrature formula (3) to the Cauchy integral
in Eq. (11), we immediately obtain the discretized counterpart

anu(xn}(Xn - = irw(Xm) m = 1,2,

(12)

If u(x)/W(x) is a polynomial of degree ^2N, the values u(xn)
and w(Xm) are exact values of functions u(x) and w(x) re-
lated by Eq. (11).

We illustrate this in Fig. 1 in the case of W(x) = 1, i.e.,
in a case where the tangential velocity itself (or the normal
velocity of a nonlifting flow) is a polynomial. The two solid
curves represent the function u(x) = 1 — [(!.+ x)/2]8 and
the corresponding w-f unction, which is defined by Eq. (11).
We have chosen N =. 4. Therefore, and as the order of the
polynomial considered is equal to the maximum order 2N =
8, the relation (12) is exactly valid. The points [Xm,w(Xm)]
and [xn,u(xn)] must accordingly lie on the solid curves, as is
shown by the circles in the figure.

It is interesting to compare the present discretized method
with the vortex-lattice method. The latter employs as
integration points (vortex points) and singularity locations
(control points) the -J- and f points on N equal subintervals of
the chord. It is generally known that these locations yield
surprisingly good results in ordinary cases. In the present
example, by using w values agreeing with the w curve, they
yield u values which have been marked by squares in the
figure.

A similar example but for constant loading has been treated
by James6 by the vortex-lattice method. His results deviate,
however, rather much (about 9% for N = 20) from the true
solution. As the u function considered by James is nonzero
at the trailing edge, while the present one vanishes there, we
are tempted to conclude that the vortex-lattice theory is un-
suitable for functions which do not satisfy the Kutta-Jou-
kowsky condition.

In the ordinary case of a lifting flow with constant or poly-
nomial downwash, it is appropriate to choose W(x) = [(I —
x)/(l + x)1/2], and for a slender or a finite wing it is also
relevant to consider the weight functions (1 — o;2)~1/2 and
(1 — #2)1/2. Examples for these are not given here, for the
formula (3) is then equivalent with the formula of Brakhage,
and applications of this were shown in Ref. 7. Borja and
Brakhage7 achieved such a transformation of the basic integral
relation that the quadrature formula can be applied also for a
finite wing for chord-wise and span-wise integration. In a
similar way, Borja8 treated recently even the problem of an
oscillating wing in incompressible flow.

We finally note that, if it is required to evaluate a weighted
integral

/» i
(13)L = jt^H(x)u(x)dx

as is often the case in aerodynamics, this can be done in a
straightforward way by means of the Gaussian formula

N
(14)

This does not require knowledge of an as the products anu(xn)
can be solved from Eq. (12). The formula (14) yields exact
values for L if H(x) is a polynomial and if the degree of this
plus the degree of u(x)/W(x) is less than 2N. Hence, the

expressions (12) and (14) may be said to represent a general-
ization of the -| chord point formula of Pistolesi,9 but not only
to any number of vortices and control points but also to load-
ings characterized by an arbitrary weight function W(x).

Conclusions
It has been demonstrated that the Gaussian quadrature

formulas can be applied in the ordinary way even to a Cauchy
integral if the singularity is located at any of certain appro-
priate points. Such points have been defined for integrands
containing an arbitrary weight function and a regular factor.
The formulas are exactly valid for polynomial factors of a
degree equal to twice the number of integration points.
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Wave Propagation in Three-
Layered Plates
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CONSIDER a traction-free, infinitely long plate made of
three layers of different isotropic materials of different

thickness (see Fig. 1). The material constants and geometry
pertinent to layers 1, 2, or 3 will be designated by the super-
scripts (1), (2), or (3), respectively.

The solution of the Navier equations of motion for the ith
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